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Abstract

All current gravitational wave (GW) detectors, such as those of the Laser Inter-

ferometer Gravitational-wave Observatory (LIGO) and Virgo, are precision optical

interferometers with sub-attometer displacement sensitivity. Free space propaga-

tion of the optical beams of LIGO requires large (meter diameter and kilometers

of length) evacuated stainless steel beam tubes that come with sizable manufactur-

ing and operational costs. A fiber based detector – with the free space beams of

present schemes replaced by concentrated fiber spools – could mitigate these costs

while simultaneously offering a more compact experimental setup. But whether fiber

technologies can achieve the noise sensitivity required to detect GWs is still an open

experimental question.

Optical fiber technology was first examined as a candidate platform for GW detection

in the late 1980s. Since then, much progress has been made in modeling and reducing

noise sources in single-mode silica-based fibers. Additionally, the development of

novel fiber technologies, e.g. hollow core and photonic crystal fibers, have generated

excitement for improved noise profiles when it comes to thermal delay constants and

scattering sources. To our knowledge no comprehensive recent reassessment of the

noise properties of optical fibers aimed at gravitational wave detection exists in the

literature.

Here we carry out calculations of the strain sensitivity for a hypothetical Michel-

son interferometer with silica-based fibers in each arm. Limits to sensitivity arising

from thermoconductive, thermomechanical, and shot noise sources are established

and compounded to arrive at an estimate of the overall noise floor. Considering an

interferometer with kilometers of arm length, comparable to that used in the cur-
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rent generation of GW detectors, we estimate the strain at 100 Hz to be around

10−16
√
Hz. This is a factor of a million worse than what has been achieved by Ad-

vanced LIGO. While sobering, avenues exist which might lead to gains in sensitivity.

Advanced cooling strategies, novel fiber technologies, and parameter tuning in the

thermal noise model all have the potential to drive improvements. We conclude by

summarizing the major developments in each area.
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Chapter 1

Introduction

In any precision measurement, one of the most important factors is the noise sources

that limit our ability to measure the desired signal – the signal-to-noise ratio (SNR).

Gravitational wave detection – observing perturbations in the very fabric of space-

time arising from violent cosmic events – requires measuring changes in spacetime

distances smaller than attometers. Seismic, thermal, quantum shot, and a whole

potpourri of environmental noises limit the sensitivity of gravitational wave (GW)

detectors. In 2015, the decades-long efforts by LIGO scientists towards isolating and

mitigating such minuscule yet limiting effects paid off in grand fashion with the first

direct detection of gravitational waves [1].

The signal involved in that measurement - an astronomical chirp representing the

collision of two black holes 1.3 billion light years away - was read out against a

background of noise sources that are given by the sensitivity curve shown in Fig 1

below. This plot represents the detection capability of the Advanced LIGO instru-

ment, the smallest perturbations in "GW strain" 1 that LIGO is able to resolve. In

the sections below, we will expand on how lowering this strain sensitivity is deeply

related to detecting the changes in spacetime caused by a passing GW. But suffice it

to say that over the past two decades a large scientific community has been devoted

to improving the strain sensitivity of LIGO, lowering the "noise" component of a

signal-to-noise ratio.
1GWs cause changes in distance proportional to the distance itself, a strain. Converting between

strain and displacement is a matter of multiplying displacement by the length of the detector, or
4000 m in the case of LIGO.
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Figure 1.1: LIGO strain sensitivity curve in September 2015, at the time of the first
detection of gravitational waves [1]

The effect of GWs we are trying to observe with LIGO is infinitesimally small. In

order to confidently distinguish between a GW and random background fluctuations,

the SNR needs to be as large as possible. Above, we stated that the strain sensitivity

curve represented the noise component of a signal-to-noise ratio. Within the body

of this thesis, noise refers to uncertainties arising from fluctuations of the

measuring system. Some fluctuations, such as vibrational or thermal noise, can

be mitigated by better engineering of isolation systems, material or geometric prop-

erties. Others, such as quantum shot noise, are more fundamental and require clever

quantum sensing schemes such as injection of squeezed states of light [Ref]. It will

also be useful to pin down what we mean by a signal to noise ratio: the signal-to-

noise ratio is a measure of the strength of some information carrying signal

of interest versus the background interference against which the signal is

measured. It follows that if the background interference is too strong, the signal is

immeasurable; nothing is detected.

Achieving high SNR in LIGO requires an enormous investment of resources. One of
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the largest cost drivers in LIGO are the beam tubes maintained at ultrahigh vacuum

conditions, needed for free-space propagation of the optical beams currently used.

The engineering design challenges, the cost, and the need for large tracts of land

that are typically sited in remote locations all motivate the search for alternative,

more compact, and potentially cheaper solutions with comparable sensitivity.

One option is the use of optical fiber technology. The prospect of a fiber-based

GW detector has persisted as a nascent possibility. It presents a road to a coiled

setup where the long interferometer arms of current schemes are replaced with "fiber

spools," guiding in the light in a constricted space through many round trips. Such

a setup would allow for compact operation from laboratories and could save on some

of the costs and complexity of major observatories.

Fiber interferometry was first considered as an option during the late 1980’s in the

original Bluebook for LIGO [16]. At that point, Brillouin and Raman scattering noise

sources were shown to impose a fundamental and crippling limit on input power and

thus on shot noise limited performance 2. Combined with the stringent thermal noise

profile of fibers, the idea of a fiber-based interferometer seemed impractical at that

time.

Since then, much progress has been made in modeling and reducing noise sources

in single-mode Silica-based fibers. Additionally, the development of novel fiber tech-

nologies, e.g. hollow core and photonic crystal fibers, have generated excitement

for improved noise performance when it comes to thermal delay constants and scat-

tering sources. While the outlook is still difficult, our understanding of and ability

to mitigate noise in fibers has advanced, but to our knowledge no comprehensive

reassessment of the noise properties of optical fibers aimed at gravitational wave

detection exists in the literature.

Given the advances in optical fiber technology since the 1980s, the purpose of this
2Since shot noise scales as the square root of laser power in an optical measurement, the SNR

of the measurement improves with larger power. Nonlinear effects, however, dominate the noise
performance of optical fibers with high laser powers, which sets a limit on the lowest shot noise
achievable.
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work is to revisit the possibility using optical fibers for GW detection. We carry out

calculations of the strain sensitivity for a hypothetical Michelson interferometer with

silica-based fibers in each arm. Limits to sensitivity arising from thermoconductive,

thermomechanical, and shot noise sources are established and compounded to arrive

at an estimate of the overall noise floor.

Section 1.1 begins with an overview of the current free-space beam setup in LIGO.

After describing the general layout, cavity design, and theory behind the free-space

beam detector, we propose an analogous setup with compact fibers. In order to

achieve the long arm length required for a GW detector, we spool the fiber length

around many times in an elliptical shape, equivalent to propagating the light through

multiple round trips. A more detailed description of our design can be found in

Section 1.2.

Subsequently, we carry out the strain sensitivity calculations for the fiberoptic setup.

Chapter 2 develops the Wanser and Duan theories of thermal noise, the most pro-

nounced limitation on the fiber noise floor and consequently on the signal to noise

ratio. The Fluctuation-Dissipation theorem is a general framework for examining

such thermal noise sources and can be used to link equilibrium fluctuations with

the dissipative properties of a system. Section 2.1 lays out this theory in its general

form, while Sections 2.2 and 2.3 apply it to the two classes of thermal noise which

most seriously afflict fibers: thermoconductive and thermomechanical sources.

Scattering noise sets another intrinsic limitation on the SNR of precision fiber in-

terferometry. However, the influence of scattering noise (typified by Brillouin and

Raman scattering sources) is more subtle. The thermal noise sources described above

serve as fundamental limits on strain. The scattering sources, by contrast, serve as

fundamental limits on power. The importance of achieving high powers will be im-

mediately apparent to specialists in quantum detection: the higher the power, the

lower the shot noise limited sensitivity. Chapter 3 will examine this dynamic.

Chapter 4 briefly examines other noise sources and complicating factors, including

attenuation in fibers and amplifier noise. Section 4.2 pulls it all together: combining
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the calculations from the thermal and scattering theories in order to arrive at an

overall sensitivity curve for noise in fiber.

Having characterized the limits of fiber interferometry, Chapter 5 puts it all in con-

text. While the strain sensitivity achievable in state-of-the-art Silica fibers is many

orders of magnitude away from achieving the requisite performance for detecting

GWs, this thesis concludes by summarizing the path to improvement, including ad-

vanced cooling schemes and the possibility of enhanced noise mitigation in photonic

crystal and/or hollow core fibers.

1.1 Free Space Propagation in LIGO: Theory and
Design

LIGO can be viewed as a kind of transducer: it takes a difficult to measure infin-

itesimal perturbation in length (spacetime), and converts it into something more

amenable to scientific analysis, a signal in the audioband that can be registered on

a photodetector.

The instrument of choice for such transduction is a Michelson interferometer, consist-

ing of two orthogonal "arms" within which laser light circulates. The interferometer

is designed for detecting subtle differences in the path length traversed by the light

in one arm relative to the other arm.

Figure 1.2: Diagram of a Michelson Morley Interferometer with 3 km arm length,
including beam splitter and output photodetector [9]
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Laser light is an exquisite tool for registering such minute changes. The oscillations

of light - its phase - can be thought of as both accurate timekeeper and ruler. By

controlling as much as possible for differences in path length between the two arms,

the two light beams can be made to remain in phase for the duration of the transit

time. Consider a laser beam incident on the beam splitter (BS) depicted in Figure

1.2. The emergent rays diverge perpendicularly, each directed into a cavity arm of

length 4 km. After reflecting off of the cavity back mirror, the rays eventually exit

the cavities through the same port they entered, interfering with each other on the

back end of the BS to create a signal on the photodetector.

If the two arms are carefully configured to the exact same effective path length

(modulo fluctuations which can be controlled for using a translatable mirror or other

actuation), the light will interfere constructively. The signal on the photodetector

will be maximal. Conversely, if the two arm lengths are not so perfectly identical,

differences or noise fluctuations between the two arms might be large enough to

break such constructive interference, introducing a phase misalignment and leading

to a reduced signal amplitude on the output. In essence, we have taken something

that is difficult to measure, the slightest differences in length between two arms,

and converted it into changes in laser power, a powerful and productive tool in

experimental physics.

Figure 1.3: Simple image depicting constructive and destructive interference. [22]

This sensitivity of signal amplitude to phase difference is actually a good thing. In-

deed, the passing of a GW itself manifests as a contraction of length in one direction

and an expansion of it in another. One arm length is stretched, while the other is
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compressed, resulting in a variation in effective path length between the two arms.

Such a variation is so infinitesimally small so as to be imperceptible to other schemes

for detecting changes in length, washed out by background noise. But the circulation

of light in a Michelson interferometer provides a unique platform where careful engin-

eering and control can create conditions optimized for detection of tiny GW-induced

displacements of the mirrors of the interferometer.

The description above has left out two important points. First, is the scaling of

detection sensitivity with arm length. Strain sensitivity in LIGO is calculated by

taking the displacement (or phase) noise caused by some source (e.g. thermal) and

dividing it by the total length (or equivalent phase shift) of the detector L. However,

it is important not to make generalizations as to the linear scaling of detector sensit-

ivity with length, since each noise source tends to have a different scaling with L [7].

As a general rule however, the larger the arm length L, the more sensitive is LIGO

to non-background effects such as a gravitational wave. The current generation of

Advanced LIGO detectors employ interferometers with 4 km long arm lengths.

The second important point has been foreshadowed above: the circulation of light

within the interferometer arms. From Figure 1.2, it might be easy to suppose that the

outgoing light rays from the BS only take one round trip through the interferometer

arms, bouncing a single time off of the back mirror before returning to the initial

BS. Instead, light in each arm enters a Fabry-Perot cavity, bouncing back and forth

a few 100 times between the input and end mirrors, before eventually leaking back

Figure 1.4: Classic schematic of a confocal Fabry-Perot cavity [8]
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out. This circulation of light serves two purposes. First, it builds up laser power

within the cavity, leading to an overall circulating power of 750 kW, essential for

attaining the requisite sensitivity for detecting GWs. Second, it extends the effective

length of the interferometer arm to over 1000 km. The number of round trips the

light makes is arranged by the transmissivity and reflectivity of the mirrors.

These points about the scaling of detection sensitivity which length and the circula-

tion of light in the LIGO arms will become important as we consider designs for fiber

detectors. In subsequent sections, we will face the dual problems of how to realize

longer arm lengths in fibers, where thermal noise and attenuation effects increase

with L in a way not present in LIGO, and also of how to recreate the circulation and

build up of power that the arm cavities provide for LIGO.

1.2 Proposed Design for a Fiber Interferometer

The prime benefit of a fiber-based GW detector is the possibility of a more compact

experimental setup. Here, we describe a proposed design for this compact fiber

interferometer, manifesting as a Michelson interferometer where the arm cavities are

replaced by wound fiber spools, carrying the light through many round trips. In

imagining our experimental setup, we have chosen to "dream big," envisioning that

the technical problems involved in spooling tens of km of fiber in a compact space can

be solved with creative engineering. Before investing the enormous effort involved

in realizing such a setup, it would be good to know whether it is worth realizing in

the first place. For this reason, we chose to focus on fundamental noise limitations

rather than engineering ones for the preliminary investigations of this thesis.

Fig 1.4 depicts our proposed interferometer design. Just as the schematic for the

traditional Michelson interferometer shown in Fig 1.2, a laser beam is incident on a

BS. Unlike the classical setup, however, the beams past the BS do not enter a cavity

within which they circulate back and forth. Instead, the beams are mode matched to

launch into a fiber spool, where the light accumulates an effective arm length of, say,

10 km (the number of windings required to amass 10 km in a compact setup might
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Figure 1.5: Proposed geometry for a Michelson "fiber interferometer."

seem intimidating, but it is our hope that clever tricks could be used to for example

distribute the number of windings across multiple spools, etc). After passing through

the spool and reflecting off the end mirror, the light exits through the same input,

interfering with the its counterpart from the orthogonal arm spool, and creating an

output signal on the photodetector in a similar manner to the original Michelson

scheme.

One concern not present for free-space beam interferometers, but at issue for fibers,

is maintaining the polarization of the circulating light. Light traveling in a single-

mode fiber can experience random fluctuations in polarization induced by stress,

vibration, and temperature changes. To combat this issue, we propose that the end

reflection be accomplished by a so-called "Faraday mirror," which both reflects the

light and rotates its polarization by 90◦. This has the effect of canceling out any

variations in polarization that might have been introduced during the transit time,

while simultaneously serving allowing the light to travel backwards through the fiber

without interfering with the forward propagating beam.

Polarization effects, however, are not the only sources of noise in fibers. As mentioned
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in the introduction, a whole potpourri of effects contribute to optical losses and noise

in fibers. Thermal noise, scattering, and other processes unique to fiber must be

considered to guide the realization of such a detector for measuring GWs. Having laid

out the overall design of our setup, we now examine its capabilities in the subsequent

sections, exploring the specific models and calculations which set limitations on the

strain sensitivity of our proposed fiber interferometer.

Danial Shadmany (shadmany@stanford.edu) Introduction 10
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Chapter 2

Thermal Noise

Thermal noise sources are the largest impediment to achieving the sensitivity needed

for detecting GWs with fiber interferometers, setting an essential limit on the strain

sensitivity, and hence the SNR that can be achieved in such systems. In this section,

we conduct a general review and derivation of the most punishing sources of thermal

noise and their consequences for detecting GWs.

The overwhelming proportion of intrinsic thermal noise in fibers can be attributed

to thermoconductive and thermomechanical effects [2, 6, 21]

• Thermoconductive effects result from fluctuations in temperature, which drives

thermal expansion and variations in the temperature-dependent refractive in-

dex of the fiber.

• Thermomechanical effects are associated with random expansion or contraction

of the fiber caused by internal friction (i.e. structural damping).

These effects have been extensively studied by Wanser, Foster, Duan, and others [2,

6, 21].

In a 2013 paper [6], Duan made a key contribution by demonstrating that both

thermomechanical and thermoconductive effects could be derived under the simple

framework of the fluctuation dissipation theorem (FDT)[3]. A wide ranging concept

with large implications, we devote the first part of this section to developing the

Danial Shadmany (shadmany@stanford.edu) 11
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FDT with an eye towards employing it to derive expressions for the thermal noise

profiles of interest.

2.1 The Fluctuation Dissipation Theorem

Equilibrium dynamics form the bulk of most introductory courses in thermodynam-

ics. Typically, such processes are reversible and can be understood using variants of

the First Law of Thermodynamics with a chemical potential term. However, when

thinking about processes which include dissipation, loss, and noise (such as occurs for

light propagating in a fiber) a different development is needed. For non-equilibrium,

irreversible, or dissipative phenomena our tool set is much more limited.

The Fluctuation-Dissipation theorem (FDT) is a powerful idea [3, 14]. It relates

a system’s equilibrium fluctuations to the non-equilibrium response of that same

system to external forces. In 1905, Einstein discovered the most famous instance of

the theorem [14]. Consider the Brownian motion of particles. For specificity’s sake,

we consider the instance of colloidal particles floating in a liquid medium. When

observed under a microscope, one perceives the random vibrations of such particles,

a phenomena which arises due to impacts with the liquid molecules. Even in thermal

equilibrium these fluctuations – labeled Brownian motion – are manifest.

Now consider a very different and seemingly unrelated effect. Suppose an external

force is applied to the system. For the charged particles above, an applied electric

field gives rise to two effects: on the one hand, the particles are directed through the

medium as described by Lorentz’s force law; on the other hand, random collisions

with the liquid resist this motion, giving rise to a frictional force.

The insight at the heart of FDT is that because equilibrium Brownian motion and

non-equilibrium frictional effects have the same origin - i.e. random collisions with

the background medium - they can be tied together mathematically. Concretely, the

generalized fluctuations can be expressed in the frequency domain as a power spectral

density. The response of a general system to an external force can be characterized

Danial Shadmany (shadmany@stanford.edu) Thermal Noise 12
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to first order by the admittance Y (ω), and dissipation is represented in part by the

real part of Y .

The FDT then relates fluctuation and dissipation as follows:

Sx = kBT

πω2 ReY (ω). (2.1)

What we have then is a general procedure for determining the noise profile of some

arbitrary parameter x given an understanding of the admittance function which

quantifies the system’s response to external forces. Since it is, as a general rule, much

easier to calculate Y (ω) – thermomechanical noise, for example, can be examined

using the normal mode expansion, where the admittance function Y (ω) simply be-

comes a sum over a set of harmonic oscillators with damping. This is a powerful

result.

Deriving equation (2.1) requires a more sophisticated mathematical apparatus than

we have going here. However, it would be instructive to gain intuition as to how

exactly fluctuation and dissipation come to be related. Einstein anticipated the FDT

when he noticed that the viscous friction of a particle undergoing Brownian motion

is related to its diffusion constant by the following expression:

D = kBT

mγ

, (2.2)

which accords with our intuition that lower friction should lead to greater diffusivity.

Here, mγ = 1
µ
, where µ is defined as the mobility, or the drift velocity of particles at

a given value for the electric field.

Diffusivity itself, however, can be related to the equilibrium fluctuations for the

velocity of a particle undergoing Brownian motion. To see this, we begin with the

following expression for diffusivity:

Danial Shadmany (shadmany@stanford.edu) Thermal Noise 13
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D = lim
t→∞

1
2t

〈
{x(t)− x(0)}2

〉
. (2.3)

This expression might seem strange, but it becomes intuitive once one recalls that

(i) that the expectation of ∆x2 is akin to the standard deviation of a random walk

after n steps, which is not zero, and that (ii) the time term in the denominator serves

as normalization. This expression serves to capture net fluctuations in distance over

time for a particle in a medium, in keeping with one’s intuitive sense of the diffusion

constant D.

However, the quantity x(t)− x(0) can be written as the integral over velocity. Sub-

stituting into the square and bringing the expectation value into the integral:

D = lim
t→∞

1
2t

∫ t

0
dt1

∫ t

0
dt2 〈u(t1)u(t2)〉 . (2.4)

A clever substitution for u, followed by an evaluation of the limit can be shown to

yield [14]:

D =
∫ ∞

0
〈u(t0)u(t0 + t)〉 dt (2.5)

This is an expression for diffusivity in terms of the fluctuations of the velocity of the

particle’s velocity. Substituting our the alternative expression for diffusivity, stated

above in Eq 2.2, we arrive at:

µ = 1
mγ

= 1
kBT

∫ ∞
0
〈u(t0)u(t0 + t)〉 dt, (2.6)

where the inverse of the friction constant is known as the mobility. Let us recap

what we have just shown. We started from two expressions for diffusion, one as

related to the friction constant (Eq. 2.2), and the other as related to expected value

of distance traveled. By manipulating the second, we were able to tie diffusion to
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expected fluctuations in the velocity of the Brownian motion. Finally, we came

full circle and connected the equilibrium fluctuations of the particle to its overall

mobility, or friction.

This is a powerful procedure, which depends on the idea that the frictional force an

object experiences in a medium when an external force is applied to it (its mobility)

can be related to the variance arising from random Brownian fluctuations of an object

that is dropped into the medium with no external forces. Consider the following two

situations: (1) where a particle is dropped into a fluid and then an external field is

applied to it so that it experiences motion in some direction, and (2) the particle is

dropped into the fluid, except with the field turned off. In the first case, it is clear

the object moves, in the direction of the applied field. In the second case, the particle

also moves, but very differently: it jiggles randomly due to Brownian motion. In the

first case, we expect the particle to accumulate net distance over time. In the second

case, the particle’s position fluctuates, but the net distance accumulated is zero.

It is difficult to relate these effects because in one case there is net motion and

the other there is not. However, the fluctuation dissipation theorem subverts this

problem by drawing our attention to something else. The first lesson from the

random walk is that while the mean over n steps is 0, the standard deviation scales

with the
√
n. Likening the motion a particle experiences during Brownian motion

to a random walk, the particle which has been dropped into our fluid undergoes

no net motion, but over time its variance grows larger and larger. The rate at

which this variance grows is a property of the fluid, a consequence of the way in

which randomly fluctuating particles interact with each other. Equation 2.2 takes

this variance and divides by time to normalize it. Then, instead of comparing net

distance, the fluctuation-dissipation theorem compares the normalized variance of

an equilibrium particle with the frictional properties of the medium. In essence, an

equivalence is drawn between the ease with which the probability distribution of a

particle in equilibrium spreads itself out (while maintaining a constant mean) and

the propensity of that medium to resist changes to non-equilibrium forces.
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The hope is that the preceding exercise has provided intuition as to the power and

general applicability of the fluctuation-dissipation theorem. Returning to the more

precise statement of the theorem above:

Sx = kBT

πω2 ReY (ω), (2.7)

we see again the fluctuations on the right hand side (captured using a power spectral

density) equated to the linear response to external force, or admittance, on the left.

This idea is an essential tool for non-equilibrium thermodynamics. In the coming

sections, we will use it to take something which is easy to calculate for fibers (power

dissipation) and convert into the thermal phase noise spectra which we are interested

in investigating for our interferometers.

2.2 Thermoconductive Noise

The above treatment of the fluctuation dissipation theorem might have ended on a

dissatisfying note: in connecting the example of Brownian motion with the expression

for power spectral density in terms of admittance (equation (2.7)), we made a loose

leap from a specific and simplified example to a much more involved equation. While

fully teasing out the relationship between the two cases would involve examining the

full proof of the FDT, the reader still might have lingering practical concerns: how

does one actually apply such an equation towards deriving noise in an actual physical

system, a fiber interferometer, for example. In this section, we go through the specific

example for thermoconductive noise in fiber.

Thermoconductive noise arises due to temperature fluctuations in fiber. Such fluctu-

ations manifest as phase noise in two ways. First, through the corresponding expan-

sion and contraction of the fibers, and second through variations in the temperature-

dependent index of refraction. By changing the length of the interferometer arms,

expansion and contraction cause variations in the phase of the circulating light,

introducing a path length difference between the two arms with the potential to

Danial Shadmany (shadmany@stanford.edu) Thermal Noise 16



Prospects of High Precision Fiber

overshadow the phase signal of a passing GW. Variations of the index of refraction

also introduce a path length difference, though by a different mechanism: by causing

changes in the speed of the light, the light is made to arrive at a different point in

time than it otherwise might have, leading to a difference in the interference signal

at the output.

From the discussion above it should be apparent that the word "phase noise" is a

really a stand in for mechanisms that might influence (a) the actual length of the path

that the light travels, (b) the speed of traveling light, or (c) the time light takes to

travel. Such parameters are linked together and impact phase, and the "equivalence"

between a phase difference and length/time difference is useful for gaining intuition

for these systems.

For thermal noise sources, then, there are two means by which temperature fluc-

tuations manifest as phase noise. In order to derive a general expression for the

power spectral density of this phase noise, we will need two things: (1) an expression

for phase fluctuations in terms of temperature fluctuations, and (2) a subsequent

expression for temperature fluctuations in terms of the parameters of the fiber.

The first expression is provided by Foster et. al [10]. The two effects can be accounted

for simultaneously as a factor multiplied onto the power spectral density (PSD) for

temperature fluctuations.

Sφ = 4π2l2

λ2 ( dn
dT

+ nαL)2SδT (ω) (2.8)

where Sφ stands for the PSD of thermoconductive phase noise, SδT for the PSD

of the temperature fluctuations, and where ω, λ, T , and n correspond to angular

frequency, laser wavelength, temperature, and index of fraction, l to the length of

the fiber, and αL to the thermal expansion coefficient. Within the parenthesis, the

left hand term captures the changes in refractive index, while the right hand term

the variations in fiber length due to thermal expansion and contraction.

The expression above, however, leaves the fluctuations in temperature unspecified. In
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order to work with Sφ, we will need an equation for SδT . This is where the fluctuation

dissipation theorem comes in. By giving us a procedure for mapping something which

is relatively easy to derive (dissipative effects) to something which is more difficult

(temperature fluctuations), we can use "test forces" to understand the dissipative

properties of our model and from there work to solve for thermoconductive noise in

fibers.

The procedure we follow for this derivation was developed by Levin for understanding

the intrinsic thermal noise properties of the LIGO test masses [15], and can be applied

to thermoconduction in the following manner. Beginning with the statement of the

fluctuation dissipation theorem from the previous section:

Sx = kBT

πω2 ReY (ω), (2.9)

where the parameter x is a general stand in for the fluctuating variable of the system,

in our case temperature. Levin showed that if one introduces a harmonic perturba-

tion of the system (i.e. a test force) F0 cosωtf(~r), then the admittance corresponding

to that force can be written in terms of the power dissipation in the following manner:

|Re[Y (ω)]| = 2Wdiss

F 2
0

, (2.10)

with the full derivation appearing on page 660 of [15]. This means:

Sx = 2kBT
πω2

Wdiss

F 2
0
. (2.11)

So in order to find an expression for SδT , we can do the following: apply a "test

force" to our fiber system, calculate the expressions for Wdiss and F0 given that test

force, and finally substitute into equation (2.11) to get the PSD for temperature

fluctuations.

There are a few subtleties, however. First of all, we need to understand what exactly
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is a force when it comes to temperature fluctuations. For the case of the LIGO test

mass, the fluctuations were those of the position of the mirror, and consequently a

test force in the traditional sense made much sense. F and x formed a generalized

force-coordinate pair, with W = Fx . For temperature, however, we need to think

of a different generalized force: namely, entropy. Variations in entropy are related

to variations in heat according to Q = Tds, useful in the equations for thermal

conduction. It might seem strange to think of an "entropic" force in this sense. After

all, the idea of applying a test force - or even pressure - on a mirror is an intuitive

one, whereas it is difficult to even conceptualize what an entropy force even looks

like physically. For now, it suffices to remark that entropy is the state function

corresponding to temperature. The exact form of the external perturbation does not

matter, so much as the response of temperature to that perturbation. In case of the

LIGO test mirrors, force too remained abstract as an external perturbation without

necessarily being attached to any "physical" mechanism. We need not be concerned

with what caused the "force on the mirror" or the "perturbation in entropy," because

the physics we are interested in is less in the exact nature of the perturbation, so much

as the response of the system to the perturbation. To arrive at an understanding of

this response, we run thought experiments: applying imaginary "forces" which take

the form of F0 cosωtf(~r), and then calculating the corresponding dissipation. Once

completed, we can vary ω to arrive at an understanding of the response/dissipation

of a system for different frequencies.

Let’s go through this process for the case of temperature fluctuations in fiber. Be-

cause the local fluctuations are sampled using a Gaussian beam, our formula for the

entropy force will need to have a form factor matching that of the laser beam profile.

Writing the cosine term as an exponent and normalizing, this gets us:

δS(r, t) = F0

πr2
0l
e−r

2/r2
0e−iωt, (2.12)

where r0 is the effective radius of the Gaussian power profile and l is the fiber length.
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Figure 2.1: Gaussian beam profile of light propagating in fiber [6]

It was difficult to express this perturbation in terms of temperature, because temper-

ature itself is complexly varying parameter which given as the solution of a differential

equation according to the general theory of thermal conduction. An entropy change,

however, gives rise to a heat change according to Q = T∆S, which can be inserted

into the differential equation for conduction as follows:

κ∇2δT − Cv
∂δT

∂t
= T

∂δS

∂t
, (2.13)

which, along with the time derivative, represents the change in energy over time.

Here, κ is the thermal conductivity and CV is the volumetric heat capacity. Plugging

in our expression for the entropic force from equation (2.12) and breaking up the ∇

operator into the components of r, we get:

∂2δT

∂r2 + 1
r

∂δT

∂r
− 1
D

∂δ∂T

∂t
= −iωF0T

8πlκ e−r
2/r2

0e−iωt. (2.14)

The solution to equation (2.14) can be found in equation (11) of Wanser [21]. From

the right hand side of the differential equation, it is clear that the system will have

some element of dissipation. Wanser derives an expression for this as well:

Wdiss = ω2F 2
0 T

8πlκ Re[e2iψ0E1(2iψ0)] (2.15)
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where ψ0 = ωr2
0

4D , E1(x) is the special function of the exponential integral, and

D = κ

CV
. For the sake of completeness, the function for E1(x) is given as:

E1(x) =
∫ ∞
x

e−t

t
dt. (2.16)

We now have the ingredients to calculate the PSD for thermal noise according to

equation (2.11). Plugging in our expression for Wdiss:

SδT (ω) = kBT
2

4π2lκ
Re[e

iωr2
0

2D E1(e
iωr2

0
2D )]. (2.17)

This is the full expression of the PSD for temperature fluctuations. However, in

practice, calculating E1 at each ω can be quite tedious. To subvert this, in practice

we will use an approximation for equation (2.17) derived by Wanser, valid in the

case where ω
v

is negligible, v being the velocity of light in the fiber:

SδT = kBT

4π2lκ
ln

k4
max + ω2

D2

k4
min + ω2

D2

. (2.18)

Here, D is the thermal diffusivity, kmax = 2/w0 (w0 being the fiber mode-field radius),

and kmin = 2.405/af (af being the fiber outer diameter). A comprehensive table of

the constants and the values used can be found in the Appendix. The presentation

here differs from the usual development of Wanser’s formula only in that we have

kept the terms corresponding to ST and Sφ separate for clarity. A simple substitution

is all that is needed to get a final expression for Sφ.

Finally, looking towards a calculation for stain, we need convert our PSD into root

mean squared (rms) fluctuations in phase noise:

φrms(l, ω)√
Hz

=
√

4πSφ(L, ω). (2.19)
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This follows the form given in Bartolo [2]. We now have a general expression for the

thermoconductive phase noise of our system at a given frequency.

2.3 Thermomechanical Noise

Thermoconductive effects arise from random fluctuations of the fiber length or index

of refraction due to temperature. Thermomechanical effects, by contrast, are caused

by the internal friction – or structural damping – of the medium. While the overall

picture of such internal friction is unclear, it can be thought of as related to Brownian

motion, where the random motion of the glass particles induce phase changes on the

propagating laser light.

The effects of this mechanical damping can be understood using the normal mode

expansion [6]. We treat each normal mode as a harmonic oscillator, which has

admittance:

Yx(ω) = ωkφ(ω) + i(ωk −mω3)
(k −mω2)2 + k2φ2(ω) (2.20)

Substituting into the FDT, the PSD for each mode i then goes as (remember, the

FDT takes only the real part of Yx):

SL,i(ω) = kBT

πω

∑
i

ωiφi(ω)
mi[(ω2 − ω2

i )2 + ω4
i φ

2
i (ω)] (2.21)

where mi, ωi, and φi(ω) are the mass, normal mode frequency, and loss angle as-

sociated with each mode i. To solve for ωi for a single mode, it is reasonable to

approximate the fiber as a thin rod in one dimension, and so to use the one dimen-

sional elastic wave equation:

∂2uz
∂z2 −

ρ

E0

∂2uz
∂t2

= 0 (2.22)

where ρ is the density and E0 the Young’s modulus. Solving this equation yields:

Danial Shadmany (shadmany@stanford.edu) Thermal Noise 22



Prospects of High Precision Fiber

uz,N(z, t) = wn(z)e−iωnt (2.23)

where ωN = nπ

l

√
E0

ρ
. From this the effective mass for each mode i can be shown to

be: mN = ρAl

2 . Substituting into equation (2.21), and assuming that the loss angle

is frequency independent and constant across modes:

SL,i(ω) = 2kBT lφ0

π3AE0ω

∑
i

1
i2[(1− ω2

ω2
i
)2]

(2.24)

For high frequencies, this expression need be solved numerically, summing over the

modes i (summing up to N = 10 is normally reasonable as the higher orders make

only minor contributions to power). However when the frequency ω is much less

than the frequency of the first mode ω1, the frequency terms vanish, and we can

easily take the sum over i of 1
i2

to be π
2

6 . This gives:

SL(ω) = kBT lφ0

3πAE0

1
ω

(2.25)

φ0 is the loss angle, A the cross-sectional area of the fiber, and E0 the bulk modulus.

Once again, we are interested in the rms fluctuations of the phase noise:

φrms(l, ω)√
Hz

= 2π
λ

√
SL(ω) (2.26)

Similar to the derivation for thermoconductive noise above, we now have an expres-

sion for thermomechanical phase noise as a function of frequency.

There are a few things to remark on. First, is the 1/f dependence of the PSD, a

familiar form for thermal noise sources of this kind. Second, is the significance of the

loss angle for the magnitude of the thermomechanical noise. The Young’s modulus

E0 of the material, the cross sectional area A, and Boltzmann’s constant are relatively

fixed parameters when compared to T , l, and φ0. While optimizing these three para-
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meters represents that most straightforward road for improving thermomechanical

noise, in general implementing advanced cooling systems and increasing the length

of the fiber tend to be hard, as will be discussed further in Chapter 5. Consequently,

engineering the material properties so as to lower loss angle is of great significance.

Depending on the value of this loss angle, thermomechanical noise can either be

more or less punishing than the thermoconductive noise sources derived above. In

our final noise analysis of thermomechanical noise in Chapter 5, we will thus take

both optimistic and pessimistic approaches in order to arrive at a fuller picture of

the loss angle’s potential impact. For now, though, we move on from the linear noise

sources treated in this chapter to nonlinear scattering effects, which have important

consequences for maximum input laser power and overall device sensitivity.
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Chapter 3

Scattering Noise Sources

The thermal fluctuations treated in the previous chapter are a source of linear noise

in fibers and essentially do not scale with the laser power. In that sense, they are

intrinsic sources of uncertainty which arise due to the material and elastic properties

of the fiber itself, rather than the specific nonlinear response of the fiber to a driving

laser field. Here, we turn our attention to scattering sources. Specifically, Stimu-

lated Brillouin and Raman Scattering. We will see that counter to their thermal

noise counterparts, scattering effects do in fact scale with input power, and so have

significant consequences for our ability to circumvent limits from one of the most

restricting sources of error in high-precision systems – quantum shot noise.

3.1 Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) is a third order, nonlinear process which occurs

when a forward propagating photon transforms into a photon at lower energy and

an acoustic phonon. This occurs due to electrostriction: the passing of an electric

field displaces the ions in the dielectric material in different directions based on the

signs of the charges, warping the shape and creating a net strain. This induces the

phonons. Since the generated phonon typically moves in the forward direction, the

scattered photon at lower energy typically moves in the backward direction in order

to conserve momentum.

Figure 3.1 depicts the conversion of forward-propagating photons to the scattered
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Figure 3.1: Dispersion diagram showcasing the input and output momenta/energy
of the particles involved in SBS [13]

particles in the form a dispersion plot. During the process, both energy (symbolized

by frequency on the y axis, ω) and momentum (denoted by β on the x axis) must

be conserved. The "light line" represents the pump photon and is indexed by p

with energy ωp and momentum βp. The scattered photon is indexed by s, while the

acoustic phonon is taken to have (Ω,B) for its energy/momentum. As expected, the

two light sources follow linear dispersion relations. The dispersion relation for the

acoustic phonon can be approximated to be linear for small β.

For SBS, then, the most important parameter is the percentage of input optical power

which is converted into backward-propagating light. As this input power increases,

the processes which drive electrostriction increase as well, reaching a point where

the entire input power is lost to scattering. In order to mitigate such scattering

and to allow for propagation at all, it will be necessary to set limits on the laser

input power. Calculating the percentage of scattered light is an important task for

determining such a limit, which is what we do next.

3.1.1 Solution for the Density Variation and Power Threshold

The scattered waves from SBS have two components: the backward-propagating

optical photons and the forward-propagating acoustic phonons. In this section, we go
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through the mathematics for the acoustic phonons, which manifest as a perturbation

in the material density of the fiber.

We begin with the differential equation for material density, following the derivation

presented in Kobyakov et al. [13], and including terms for damping, sound, and

electrostriction:

∂2ρ

∂t2
− Γ∇2∂ρ

∂t
− v2

A(r)∇2ρ = γe
2 ∇

2E2 (3.1)

where ρ is the density fluctuation around the mean value ρ0, Γ is the damping factor,

vA is the squared longitudinal sound velocity, and γe is the electrostriction constant.

As implied by the expression, the differential equation prescribes how the material

density changes when some external field is applied to the system. In our case,

it links the applied laser field to the consequent change in density, i.e. the phonon

induced by Brillouin scattering. Our expression for the electric field is a superposition

of forward- and backward-propagating waves, according to the two halves of the

Brillouin process:

~E(r, z, t) = 1
2[A1(z, t)ei(ω1t−β1z) ~u1 + A2(z, t)ei(ω2t−β2z) ~u2] + c.c. (3.2)

where f(r) is the laser mode profile (i.e. Gaussian) and Aj(z, t) are the slowly varying

envelopes of the field.

Taking the gradient of equation (3.2) yields:

∇2E2 = −1
2f

2(r)A1(z, t)A∗2(z, t)β2
se
i(Ωd−βsz) + c.c. (3.3)

where Ωd = ω1 − ω2 and βs = β1 + β2. Substituting equation (3.2) into (3.1) gives

us a differential equation which can be solved by guessing solutions of the form:
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ρ(z, t, r) = 1
2[

M∑
m=1

ρ̄m(z, t)ξmei(Ωt−qz)] + c.c. (3.4)

Here, the sum is over all the acoustic modes of the fiber, Ω is the frequency of

the acoustic wave, and q is the wave vector for the density variation. To make this

equation intuitive, notice than within the sum we simply have the product of a plane

wave (ei(Ωt−qz), the mode profile (ξm), and the amplitude of the density variation (ρm)

One can plug equation (3.3) into the differential equation and solve for ρ̄m in order

to get a final expression for the density variation. Because the math involved is

substantial, we simply quote the final result

ρ(z, t, r) = 1
4

M∑
m=1

[ξm(r)〈ξm(r)f 2(r)〉
〈ξ2
m(r)〉

γeq
2A1(z, t)A∗2(z, t)

Ω2
m − Ω2 + iΩΓq2 e

i(Ωt−qz)] + c.c. (3.5)

The expression showcases the decomposition of the phononic modes into forward (the

summation) and backward (the complex conjugate) propogating waves. The terms

can be thought of as follows: 〈ξm(r)f2(r)〉
〈ξ2

m(r)〉 represents the overlap of the phononic mode

and laser profile, and so indicates the coupling between the two. The frequency

dependent term represents the response of the system versus frequency, and follows

a similar form to the response of a driven harmonic oscillator. Finally, the exponent

represents a plane wave.

From the differential equations and solution above, one can switch back to the optical

modes and backtrack to get an expression for the optical power threshold. This

represents the power at which the magnitude of the scattered beam at the output

becomes greater than that of the original forward propogating beam beam at output:

Pth = 21bAeff
gBLeff

(3.6)

where Aeff is the core area of the fiber, Leff is the effective length, and gB is the

Brillouin gain.
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In Chapter 4, we will see how the power threshold dictated by Equation 3.6 will

come to set a limitation on overall input and so on quantum shot noise.

3.2 Stimulated Raman Scattering

The nonlinear effects we dealt with in the preceding section on Stimulated Brillouin

Scattering arose from the processes of electrostriction, the stretching and squeezing

of a material due to an applied electric field. In this section we briefly examine Stim-

ulated Raman Scattering (SRS) - another scattering process which arises instead

by excitations and de-excitations of the vibrational modes of molecules in the ma-

terial itself. These excitations can induce propogating optical phonons in the fiber

material, as opposed to the acoustic phonons we saw for SBS. Another important

difference is that because of the excitation mechanism, scattered waves in SRS can

propagate either forward or backwards, and can even showcase gain. This property

has even been used to create SRS-based amplifiers.

Analyses of SRS proceed in a very similar manner to those of SBS: with the dif-

ferential equations coupling pump, phononic, forward-propogating, and backward-

propogating waves being used to arrive at an overall power threshold - representing

the input power at which the magnitude of the scattered wave at the output becomes

equivalent to the pump wave also at the output. Carrying out these calculations,

it turns out that the magnitude of the scattered waves for SRS are much smaller

(more than two orders of magnitude) than those for SBS, with a power threshold at

around 450 mW as compared to the 30 mW threshold found for SBS [18]. Because

of this, for the final noise analysis in the next chapter, we assume that any power

low enough to mitigate SBS will also suffice for suppressing the effects of SRS.

Having understood the limitations on power caused by stimulated scattering effects,

we now move on to conduct a final noise analysis of the sensitivity limits of an optical

fiber interferometer.
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Chapter 4

Results

Having derived analytic expressions for thermal noise and Brillouin scattering, we

now carry out the final noise analysis by entering those noise models into the software

package Gravitational Wave Interferometer Noise Code (GWINC) [11]

The different noise contributions for a hypothetical fiber-based Michelson interfero-

meter are shown in the figures below.

4.1 Thermal Noise

Fig 4.1 shows the strain sensitivity curves for the Wanser and Duan models at

room temperature, corresponding to thermoconductive and thermomechanical noise

respectively. The Wanser model, shown in red, holds flat at a strain of about

10−16 /
√
Hz until a frequency of about 3 kHz. Conversely, the strain sensitivity

curve of the Duan model descends inversely proportional to
√
ω, with the blue and

green curves evaluated at mechanical loss angles of 10−2 and 10−5, respectively.

The rms phase noise expressions derived in the preceding chapters need to be con-

verted into the units of strain sensitivity. We divide by the total amount of radians

in an interferometer of length l:

strain =
φrms(l,ω)√

Hz

0.78φrad(l)
=

φrms(l,ω)√
Hz

l × 5.421× 106 (4.1)
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Figure 4.1: Thermomechanical (blue, green), and thermoconductive (red) noise
curves for an interferometer arm length of 10 km at room temperature.

where we have taken l = 10 km for the calculations below, in line with the interfer-

ometer arm length of Advanced LIGO.

We plot the Duan model at two different loss angles, one more pessimistic (blue),

the other optimistic (green).

The limits on sensitivity set by thermal noise are significant. The Wanser model

alone sets a noise floor of around 10−16/
√
Hz at frequencies below 3 kHz, between

six and seven orders of magnitude higher than the current strain sensitivity of Ad-

vanced LIGO in the same frequency range. In principle, the thermoconductive effects

captured by the Wanser model can be mitigated by engineering the thermal expan-

sion and refractive effects to cancel with each other (in Equation 2.8, this would take

the form of a negative expansion coefficient), however, tuning the parameters in this

way comes with the possible trade off of a higher loss angle in the Duan model.

Cooling can also lead to a lower noise floor. But while temperatures lower than room

temperature are in principle achievable, it would be extremely difficult for cooling

alone to make up the gap. For example, given the
√
T dependence of the strain

Danial Shadmany (shadmany@stanford.edu) Results 31



Prospects of High Precision Fiber

Figure 4.2: Shot noise comparison between 60 mW light beam propagating in fiber
(blue) and Advanced LIGO operational power of about 33 W (red). Power level in
fiber set to minimize SBS and SRS effects.

Figure 4.3: Strain sensitivity of total thermal-optic (purple) and thermo-mechanical
(blue) noise sources in fiber plotted in reference to the Advanced LIGO sensitivity
curve
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sensitivity and the change in material constants due to changes in temperature,

bringing the fiber spool down to the temperature of liquid helium would lead to an

improvement of an order of magnitude at best. Alternative cooling schemes exist in

the literature, but by and large they operate between 80 K and room temperature

[23], and it is not clear whether such procedures could be applied to the presumably

much larger space required to house a fiber coil with a length upwards of 10 km.

The few schemes which do use dilution refrigerators to achieve temperatures in the

hundreds of milliKelvin operate in incredibly restricted spaces and consequently it

appears all the more difficult to apply them to a hypothetical fiber interferometer

[23, 12].

The final option for thermal noise mitigation is to search for alternative fiber plat-

forms than the Silica-based fibers used here (see Section 4.1).

4.2 Shot Noise

Fig 4.2 depicts the total thermal noise together with the shot noise and Brownian

noise curves as reference. The strain sensitivity for shot noise scales inversely with

the square root of laser power. Laser power, however, is limited by the scattering

noise sources mentioned in the introduction. Because Stimulated Brillouin Scattering

(SBS) and Stimulated Raman Scattering (SRS) scale with laser power, here the laser

power was kept low enough to suppress their presence. An input power of 60 mW

was used for the calculations of shot noise.

When fibers were first considered as a platform for gravitational wave detection in

the late 1980’s, the restrictions set on shot noise sensitivity by SBS and SRS were

a fundamental concern that appeared to set a stringent limit on the ultimate strain

sensitivity of a fiber interferometer [16]. However, two developments since then have

led to progress in this area. Improvements in fiber attenuation, which captures

the proportion of laser power retained in fibers given travel over some distance and

is an important factor for determining the magnitude of scattering effects, mean

that higher laser powers overall can be maintained before SBS and/or SRS begin to
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dominate. Additionally, the perfection of squeezing as a technique offers the potential

to further lower the shot noise floor with lower laser power.

4.3 Brownian Noise and Fiber Amplifiers

Like shot noise, Brownian noise related to the test mass suspension system is im-

portant to the make up of the Advanced LIGO sensitivity curve. It is also an area

where a fiber detector could stand to make gains on a free beam setup.

It is not clear whether a fiber interferometer would need to utilize suspended test

masses at all. In principle, coated mirror ends appended directly on to the fiber could

serve to reflect the light beam, saving on the loss introduced in using silica glass fibers

for suspension. The gain in sensitivity made possible by such a switch is still an open

question. Nevertheless, the issue of Brownian noise caused by suspension present a

domain where fiber technology may have an advantage.

The noise curves above leave out one important factor: the inevitable need for fiber

amplifiers. At 1060 nm, the state of the art for the attenuation in Silica fibers stands

at 0.57 dB/km, meaning a large fraction of laser power is lost during transmission

over large distances. Fiber amplifiers can be used to recuperate the power loss, but

with the price of introducing excess noise into the system. Standard optical fiber

amplifiers are quoted with noise figures of 3 dB [4], corresponding to an increase of

the PSD for thermal noise by about a factor of 1.3 per amplifier. It is important

to note that strain sensitivity scales with the square root of the thermal noise PSD.

Nevertheless, the excess noise introduced by fiber amplifiers is another significant

hurdle in achieving the requisite sensitivity level. There is extensive literature de-

tailing the additional noise sources introduced by fiber amplifiers, as well as proposed

schemes for mitigating such excess noise. These will be the subject of future study

in the context of fiber-based GW detectors.
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Chapter 5

Conclusion and Future Directions

An optical fiber interferometer for detecting gravitational waves is an exciting pro-

spect. In the preceding chapters we have established that a fundamental hurdle for

realizing such a scheme is unmanageable thermooptic and thermomechanical phase

noise effects in fibers.

With current Silica-based platforms, the strain sensitivity of a fiber-based Michelson

interferometer operating at room temperature and with 10 km arm lengths is limited

to 10−16/
√
Hz at 100 Hz, nearly seven orders of magnitude higher than the compar-

able operating sensitivity of Advanced LIGO. This sensitivity is almost completely

set by thermal noise sources, but is an underestimate due to excess noise introduced

by fiber amplifiers which are necessary to combat power loss.

Given the stringent limit set on strain sensitivity in Silca-based fibers, one might

ask if there are other potential fiber platforms which might showcase improved noise

profiles. For example, the class of relatively new fiber technologies which includes

photonic crystal (PC) and hollow core (HC) platforms have already demonstrated

potential when it comes to applications as diverse as data transfer using 5G, the

synchronization of financial transactions, and communication between networks of

widely spaced telescopes [20]. Do these advantages apply as well to the problem

of mitigating thermal noise and using a fiber interferometer for gravitational wave

detection?

The properties of PC/HC platforms are well documented when it comes to meas-
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urements of the thermal coefficient of delay (TCD) constant - the parameter most

important for the applications mentioned above. But comprehensive characteriza-

tions of thermal phase noise in these new fiber platforms have yet to occur. Early

studies have yet to show any advantage for PC/HC [17, 19], but this comparison

is skewed, as not as much attention has been given to parameter optimization and

noise mitigation in these novel platforms.

Advantages have been demonstrated when it comes to the less restrictive issue of the

scattering noise sources, however. In particular, reductions of Stimulated Brillouin

Scattering of up to one to two orders of magnitude have been noted, potentially

paving the way for higher operating powers and lower shot noise floors in fibers [5].

In general, however, the full ramifications of HC/PC fibers for strain sensitivity in

high precision fiber interferometers are not yet well understood and represent an

active area of investigation.

When fiber technology was assessed for gravitational wave detection in the late 1980s,

Standard Brillouin and Raman scattering seemed to set a fundamental limit on

the shot noise sensitivity of fiber interferometers. Improvements since then in fiber

attenuation constants and squeezing techniques may indicate progress in this area.

The avenues for improving thermal noise in optical fibers mentioned above repres-

ent directions for technological development. The question of mitigating thermal

noise – and so of detecting gravitational waves in an optical fiber interferometer –

remains an area of active investigation and research. Though it must be noted that

a sizable advancement would be needed in order to overcome the factor of a million

difference between the strain sensitivity of Advanced LIGO and a hypothetical fiber

interferometer [1].
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